Gorenstein algebras, symmetric matrices, self-linked ideals, and symbolic powers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein Algebras, Symmetric Matrices, Self-linked Ideals, and Symbolic Powers

Inspired by recent work in the theory of central projections onto hypersurfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert–Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symmetr...

متن کامل

Symmetric Matrices , Self - Linked Ideals , and Symbolic Powers

Inspired by recent work in the theory of central projections onto hyper-surfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert– Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symme...

متن کامل

Symbolic Powers of Monomial Ideals and Vertex Cover Algebras

We introduce and study vertex cover algebras of weighted simplicial complexes. These algebras are special classes of symbolic Rees algebras. We show that symbolic Rees algebras of monomial ideals are finitely generated and that such an algebra is normal and Cohen-Macaulay if the monomial ideal is squarefree. For a simple graph, the vertex cover algebra is generated by elements of degree 2, and ...

متن کامل

Symbolic Powers of Monomial Ideals and Vertex Cover Algebras

We introduce and study vertex cover algebras of weighted simplicial complexes. These algebras are special classes of symbolic Rees algebras. We show that symbolic Rees algebras of monomial ideals are finitely generated. Dedicated to Winfried Bruns on the occasion of his sixtieth birthday

متن کامل

Symbolic Powers of Monomial Ideals and Vertex Cover Algebras

We introduce and study vertex cover algebras of weighted simplicial complexes. These algebras are special classes of symbolic Rees algebras. We show that symbolic Rees algebras of monomial ideals are finitely generated. Dedicated to Winfried Bruns on the occasion of his sixtieth birthday

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1997

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-97-01960-0